Deriving Protein Structure Topology from the Helix Skeletion in Low Resolution Density Map using Rosetta

نویسندگان

  • Yonggang Lu
  • Jing He
  • Charlie E. M. Strauss
چکیده

Electron cryo-microscopy (cryo-EM) is an experimental technique to determine the 3-dimensional structure for large protein complexes. Currently this technique is able to generate protein density maps at 6 to 9 Å resolution. Although secondary structures such as α-helix and β-sheet can be visualized from these maps, there is no mature approach to deduce their tertiary topology, the linear order of the secondary structures on the sequence. The problem is challenging because given N secondary structure elements, the number of possible orders is (2)*N!. We have developed a method to predict the topology of the secondary structures using ab initio structure prediction. The Rosetta structure prediction algorithm was used to make purely sequence based structure predictions for the protein. We produced 1000 of these ab initio models, and then screened the models produced by Rosetta for agreement with the helix skeleton derived from the density map. The method was benchmarked on 60 mainly alpha helical proteins, finding that for about 3/4 of all the proteins, the majority of the helices in the skeleton were correctly assigned by one of the top 10 suggested topologies from the method, while for about 1/3 of all the proteins the best topology assignment without errors was ranked the first. This approach also provides an estimate of the sequence alignment of the skeleton. For most of those true-positive assignments, the alignment was accurate to within +/2 amino acids in the sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab initio protein modeling into CryoEM density maps using EM-Fold.

EM-Fold was used to build models for nine proteins in the maps of GroEL (7.7 Å resolution) and ribosome (6.4 Å resolution) in the ab initio modeling category of the 2010 cryo-electron microscopy modeling challenge. EM-Fold assembles predicted secondary structure elements (SSEs) into regions of the density map that were identified to correspond to either α-helices or β-strands. The assembly uses...

متن کامل

Refinement of protein structures into low-resolution density maps using rosetta.

We describe a method based on Rosetta structure refinement for generating high-resolution, all-atom protein models from electron cryomicroscopy density maps. A local measure of the fit of a model to the density is used to directly guide structure refinement and to identify regions incompatible with the density that are then targeted for extensive rebuilding. Over a range of test cases using bot...

متن کامل

Improved Efficiency in Cryo-EM Secondary Structure Topology Determination from Inaccurate Data

The determination of the secondary structure topology is a critical step in deriving the atomic structure from the protein density map obtained from electron cryo-microscopy technique. This step often relies on the matching of two sources of information. One source comes from the secondary structures detected from the protein density map at the medium resolution, such as 5-10 Å. The other sourc...

متن کامل

Multipass membrane protein structure prediction using Rosetta.

We describe the adaptation of the Rosetta de novo structure prediction method for prediction of helical transmembrane protein structures. The membrane environment is modeled by embedding the protein chain into a model membrane represented by parallel planes defining hydrophobic, interface, and polar membrane layers for each energy evaluation. The optimal embedding is determined by maximizing th...

متن کامل

EM-fold: de novo atomic-detail protein structure determination from medium-resolution density maps.

Electron density maps of membrane proteins or large macromolecular complexes are frequently only determined at medium resolution between 4 Å and 10 Å, either by cryo-electron microscopy or X-ray crystallography. In these density maps, the general arrangement of secondary structure elements (SSEs) is revealed, whereas their directionality and connectivity remain elusive. We demonstrate that the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007